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1. Introduction

Brane tilings [1 – 3] are two-dimensional diagrams drawn on tori which are used to represent

the structure of a large class of quiver gauge theories. They can be used to describe

arbitrary N = 1 superconformal field theories realized on D3-branes in toric Calabi-Yau

cones. They are dual graphs of corresponding quiver diagrams, and vertices and edges in

a graph represent SU(N) factors in the gauge group and chiral multiplets belonging to

bi-fundamental representations. The graphs are bipartite. Namely, vertices are colored

black and white, and any pair of vertices connected by an edge have different colors. The

orientation of edges are determined according to the colors of vertices at the endpoints.

We take it from black to white. Because SU(N) factors correspond to faces, it is natural

to represent a bi-fundamental field Φa
b as an arrow connecting two adjacent faces for two
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Figure 1: The bipartite graph of C3 is shown. This diagram has two vertices of opposite colors,

three edges from black to white, and one hexagonal face. Among three arrows representing three

adjoint fields and three zig-zag paths representing the boundary of semi-infinite cylinders of NS5-

branes, one for each is shown.

0 1 2 3 4 5 6 7 8 9

D5 ◦ ◦ ◦ ◦ ◦ ◦

NS5 ◦ ◦ ◦ ◦ Σ

Table 1: The structure of fivebrane systems represented by brane tilings.

SU(N) factors coupling to Φa
b. The orientation of arrows, which specifies one of (N,N )

or (N,N), is also determined with the colors of vertices. We take the convention that if

the orientation of an edge is South to North the orientation of the arrow intersecting with

the edge is East to West. The head and tail of an arrow correspond to the upper color

index for the fundamental representation and the lower color index for the anti-fundamental

representation, respectively (figure 1).

The important feature of brane tilings is that they are directly related to the topological

structure of fivebrane systems realizing the gauge theories, as is clarified in [4]. We can

regard the torus on which a bipartite graph is drawn as a stack of D5-branes, and edges

in the bipartite graph as NS5-branes intersecting with the D5-branes. We can reconstruct

the worldvolume of the NS5-brane by attaching semi-infinite cylinders to the torus along

zig-zag paths in the diagram. A zig-zag path is a path made of edges in a bipartite graph

defined so that when we go along the path we choose the leftmost edge at white vertices and

the rightmost edge at black vertices. We can regard a bipartite graph as the superposition

of zig-zag paths. Because every edge is included in two zig-zag paths, each edge can be

regarded as a part of the intersection of D5-branes and NS5-branes.

We label four dimensions in which the gauge theory lives by 0123, and the two cycles

in the torus by 5 and 7. The orientation of branes in the system is shown in table 1. Σ

in the table is a two-dimensional non-compact surface in 4567 space. All branes are in

the subspace x8 = x9 = 0, and the system possesses the rotational symmetry on 89-plane.

This is an R-symmetry in the gauge theory, which is not necessarily the R-symmetry in

the superconformal group unless it is appropriately mixed with the gauge symmetries on

the fivebrane system. In the weak string coupling limit the tension of NS5-branes becomes

infinitely larger than that of D5-branes, and the worldvolume of the NS5-brane becomes a
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0 1 2 3 4 5 6 7 8 9

D5 ◦ ◦ ◦ ◦ ◦ ◦

NS5 ◦ ◦ ◦ ◦ Σ

O5 ◦ ◦ ◦ ◦ ◦ ◦

O7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 2: The structure of fivebrane systems with orientifolds. As shown in this table, both O5-

planes and O7-planes preserve N = 1 supersymmetry. In this paper we only consider the case of

O5-planes.

smooth holomorphic surface in the 4567 space. It is given by

P (ex
4+ix5

, ex
6+ix7

) = 0, (1.1)

where P (u, v) is the Newton polynomial associated with the toric diagram of the toric

Calabi-Yau cone. The NS5-brane worldvolume has branches going to infinity on the 46-

plane. Each branch of NS5-brane is topologically semi-infinite cylinder, which is attached

on the D5-branes along a zig-zag path. The asymptotic structure of NS5-brane projected

on the 46-plane gives the web-diagram of the Calabi-Yau, while the brane tiling can be

regarded as the projection of NS5-branes into the 57-plane. This brane system is related

with the system of D3-branes in the toric Calabi-Yau cone by T-duality along the 57

directions. It is possible to obtain information about gauge theories such as anomalies,

marginal deformations, etc. by studying corresponding fivebrane systems [5 – 7].

We can generalize the brane systems by introducing extra ingredients. The intro-

duction of fractional D3-branes in the Calabi-Yau set-up can be realized in the fivebrane

system by assigning integers representing D5-brane charges to external lines in the web-

diagram [8, 5]. This changes each asymptotic part of the NS5-brane into D5-NS5 bound

state. The D5-brane charge conservation requires the numbers of D5-branes on faces change

depending on the numbers assigned to external lines, and this gives different ranks of SU(N)

factors in the gauge group. It can be shown that the gauge anomaly cancels when the D5-

brane charge conserves [5].

We can also introduce flavor branes, which give fields belonging to the fundamental and

the anti-fundamental representations. In [9] non-compact D7-branes wrapped on divisors

in toric Calabi-Yau cones are investigated, and the matter contents which these flavor

branes give rise to are proposed. Such flavor D7-branes are dual to D5-branes spreading

along 012346 directions in the fivebrane systems. We discuss this type of flavor branes in

section 5 and extend the results in [9].

Recently, orientifolds of brane tilings are investigated in [10]. There are several pos-

sibilities of orientifold planes which preserve N = 1 supersymmetry. In [10], O5-planes,

fixed points in bipartite graphs, and O7-planes, fixed lines in graphs, are investigated, and

simple prescription to obtain field contents are given. The orientations of these orientifold

planes are given in table 2. They also propose a set of rules which uniquely determines the

Z2 orientifold parity of mesonic operators when the positions of fixed points in the bipartite

graphs and their “charges” are specified. In this paper, we concentrate on the orientifold
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with O5-planes, and derive these rules from the viewpoint of fivebrane systems. We leave

the O7-plane case for future work.

If we construct the gauge theory for an orientifolded fivebrane system by the naive

orientifold projection, the daughter theory, the theory obtained by the projection from the

parent theory, in general possesses gauge anomalies. This can be cured by introducing

an appropriate number of fundamental or anti-fundamental representation fields, which

we call quarks. A purpose of this paper is to explain how these extra quark fields arise

from the viewpoint of fivebrane system. By analogy to the relation between the gauge

anomaly cancellation and the D5-brane charge conservation in the un-orientifolded case, it

is natural to expect the emergence of the fundamental representation in the orientifolded

brane tilings is also guaranteed by the D5-brane charge conservation. We will show that

this is actually the case.

For this to happen it is important that O5-planes carry the D5-brane charge, and its

signature changes when it intersects with NS5-branes [11 – 14]. As is shown in section 3

this property of O5-planes explains how the quark fields arise. At the same time, this fact

raises a problem. When we use the rules proposed in [10] we have to specify “charges” of

the four fixed points. These charges, however, cannot be identified with the RR-charges

of orientifold planes because an O5-plane carries both positive and negative RR-charges

if it intersects with NS5-branes. We need to distinguish the RR-charges of O5-planes and

“charges” used in the rules. In this paper, in order to distinguish them from RR-charges

of O5-planes, we refer to the “charges” in the rules as “transposition parities” or, simply,

“T-parities”, because they are directly related to the symmetry of the corresponding field

under the transposition.1 To clarify the relation between the T-parity and the RR-charge

of O5-planes is another purpose of this paper.

This paper is organized as follows. In the next section, we briefly review the rules

proposed in [10]. In section 3 we discuss anomaly cancellations, and we there give an

explanation for the emergence of (anti-)fundamental fields which cancels the gauge anomaly

from the viewpoint of fivebrane systems. In section 4 we discuss the relation between Z2

parity of mesonic operators and the RR-charges of O5-planes, which may depend on the

position on the O5-planes. This gives rules to determine Z2 parity from the RR charges of

O5-planes. By comparing these rules and those in [10] we relate the RR-charge and the T-

parity. We investigate the relation between flavor branes and quark fields in section 5, and

propose superpotentials which correctly reproduce the worldvolumes of flavor D7-branes

in the Calabi-Yau cones as the loci in which quarks become massless. Section 6 is devoted

for discussions.

2. T-parity and mesonic operators

In this section we briefly review the rules to determine the theories realized on orientifolded

brane tilings proposed in [10]. We here only discuss orientifold with O5-planes, which are

represented as four fixed points on the torus.

1Unfortunately, this name is the same as the T-parity in the little Higgs models [15]. We hope no

confusion will arise.
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In the parent theory, each face represents an SU(N) factor in the gauge group. If a face

is identified with another face by the orientifolding, we should identify the corresponding

two SU(N). Let SU(N) and SU(N)′ be a pair of two factors identified. The reversal

of orientation of open strings implies that these two factors should be identified via the

charge conjugation. Namely, upper and lower indices of SU(N) correspond to lower and

upper indices of SU(N)′, respectively. The bi-fundamental field Φa
b′ with one upper SU(N)

index a and one lower SU(N)′ index b′, which exists if two faces identified are adjacent

with each other, is regarded as field Φab with two upper SU(N) indices or Φa′b′ with two

lower SU(N)′ indices. The symmetry for two indices of these fields is determined according

to the following rule proposed in [10].

Rule 1 (Edge rule). If a fixed point with positive/negative T-parity is on an edge, the field

associated with the edge belongs to the symmetric/antisymmetric representation.

If a face is identified with itself by the orientifolding, the corresponding gauge group

SU(N) becomes Sp or SO group according to the rule [10]:

Rule 2 (Face rule). If a fixed point with positive/negative T-parity is inside a face, SO/Sp

gauge group lives on the face.

Because the orientifold flip exchanges white and black vertices, fixed points cannot be

at vertices.

The two rules above are rules for fields which are mapped to themselves by the orien-

tifold flip. The orientifold transformations of other elementary fields, which are mapped to

other fields, depend on how we define the relative phases of fields. In [10], instead of giving

such transformations for elementary fields, they give rules for gauge invariant mesonic op-

erators, which are defined as the trace of product of bi-fundamental fields. On the brane

tiling, such mesonic operators are described as closed paths made of arrows corresponding

to the constituent bi-fundamental fields. The Z2 parity of a mesonic operator is determined

by combining the following rules:

Rule 3 (Product rule). The Z2 parity of a mesonic operator corresponding to Z2 symmetric

path passing through two fixed points is the product of the T-parities of the fixed points.

Rule 4 (Superpotential rule). The Z2 parity of a mesonic operator appearing in the su-

perpotential is negative.

For later convenience we introduce the following expression for product rule:

P [O] =

∫

C
T, (2.1)

where T =
[t4 t3
t1 t2

]
are the set of four T-parities of four O5-planes on T

2, whose positions are

shown in figure 2, and
∫
C represents the product of two parities assigned to fixed points

passed through by a Z2 symmetric path C. In section 4, we clarify the relation between

T-parity and RR-charge by using Z2 parity obtained by these rules.

As a corollary of the rules above, we can show that the following sign rule imposed on

the T-parities of the orientifold planes [10].
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Figure 2: In the O5-plane case, we have four fixed points on T2. The notation T =
[
t4 t3
t1 t2

]
is meant

to represent T-parities of four orientifold planes, as shown in this figure.

Rule 5 (Sign rule). The product of all the T-parities is equal to (−1)NW /2 where NW is

the number of the terms in the superpotential, which is equal to the number of vertices in

the bipartite graph.

3. Anomaly cancellation

With fivebrane systems described by brane tilings, we can realize quiver gauge theories with

different ranks depending on faces by changing the numbers of D5-branes depending on

faces. The D5-brane charge conservation requires that when the numbers of two adjacent

faces are not the same, the difference must be canceled by the inflow of the charge from

the NS5-brane corresponding to edges. In the un-orientifolded case, it can be shown [5]

that the gauge anomaly cancels if the brane system is consistent with the D5-brane charge

conservation law.

The purpose of this section is to show that this is the case for orientifolded brane

tilings. The gauge group of an orientifolded theory consists of SU(N), SO(N), and Sp(N/2)

factors. (When we consider gauge group Sp(N/2), we always assume that N is an even

integer.) If a face does not have fixed point inside it or on its boundary the anomaly

cancellation are guaranteed in the same way as the un-orientifolded case by the D5-brane

charge conservation. In the following we discuss anomaly cancellation for a face with an

O5-plane inside it or on its boundary.

3.1 O5-planes inside faces

If a face has a fixed point inside it and is identified with itself by the orientifold projection,

the gauge group realized on the face is SO or Sp. These groups do not have the ordi-

nary gauge anomaly. We should, however, take care of the Witten’s anomaly [16] for Sp

gauge groups. The cancellation of Witten’s anomaly requires the number of fundamental

representations for each Sp group must be even. We can easily show that this condition

automatically holds if the D5-charge conservation law is satisfied in the brane system.

Because black vertices are mapped to white vertices by the orientifold flip, a face with

O5-plane inside it has 4n + 2 edges. For concreteness let us consider an example of a

hexagonal face shown in figure 3 (a). Generalization to other cases is trivial. If the T-

parity of the fixed point is negative Sp(N/2) gauge group lives on the hexagonal face at

the center. The face is enclosed by six edges. Only three of them are independent and the

other three are mirror images. When we consider anomaly, only bi-fundamental fields for
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Figure 3: A face with fixed point inside it. The independent bi-fundamental fields are shown as

outgoing arrows.

Figure 4: The D5-brane charges assigned to two adjacent faces and the edge between them are

shown.

the independent three edges should be taken into account. We can, for example, take three

outgoing arrows as independent bi-fundamental fields.

When we discuss fivebrane charge conservation, it is convenient to use diagrams

in which zig-zag paths are represented as smooth cycles going on the right/left side of

black/white vertices in the zig-zag path. (Figure 3 (b)) We call such diagrams fivebrane

diagrams. (These are the same as what are referred to as “rhombus loop diagrams” in [17])

When the numbers of D5-branes on faces are different, the difference of the D5-branes

charge must be supplied by the attached NS5-branes, which are represented as cycles in the

diagram. In order to assign charges to faces in a consistent way with the D5-brane charge

conservation, we first assign D5-charges to cycles, and the charges of faces are determined

so that if we go across a cycle from one face to another, the D5-charges of the faces change

by the charge assigned to the cycle. In our convention, if up-going cycle carries charge n

and N is assigned to the face on the left side, the number assigned to the right is N + n.

(Figure 4) Two cycles which are mirror to each other must have the same D5-charges

with opposite sign because the orientifold flip reverses the orientation of the cycles. The

charges of six adjacent faces are shown in figure 3. The numbers of Sp(N/2) fundamental

– 7 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
8

representations for three independent arrows are

N1 = N + k +m, N2 = N +m+ l, N3 = N + l + k. (3.1)

Because N is an even integer, the total number N1 +N2 +N3 = 3N + 2k+ 2m+ 2l is also

an even integer, and the Witten’s anomaly does not arise.

3.2 O5-planes on edges

When an orientifold plane is on an edge of a bipartite graph, two SU(N) gauge groups

on both sides of the edge are identified, and the bi-fundamental field coupling to these

two gauge groups becomes symmetric or antisymmetric representation of the SU(N) gauge

group. The anomaly coefficient dR for these tensor representations are given by

d = (N − 4)d , d = (N + 4)d . (3.2)

These are different from the contribution Nd of the bi-fundamental field in the parent

theory, and we need extra ingredient in order to cancel the gauge anomaly. The simplest

way to cancel this anomaly is to introduce four fundamental or anti-fundamental chiral

multiplets as is pointed out in [10].

How these new matter fields arise in the brane system? A natural way to introduce

these (anti-)fundamental fields is to introduce four flavor branes. If we introduce four D5-

branes coinciding with the O5-plane, we may obtain four fundamental fields. (This cannot

be directly shown by quantizing open strings due to the complicated structure of the brane

system.) However, this answer is not satisfactory. On the gauge theory side, we must

introduce four (anti-)fundamental representations so that the anomaly cancels. Otherwise

the theory would be inconsistent. On the other hand, at first sight, it seems possible to

introduce an arbitrary number of flavor branes. Note that we do not have to require the

cancellation of RR-charge carried by the O5-plane. Because some of transverse directions

of the O5-plane is non-compact, the RR-flux induced by O5-plane and flavor branes can

escape to infinity. The RR-flux may cause the breaking of conformal symmetry, but it does

not cause any inconsistency at all.

Moreover, the RR-charge of O5-plane (which are defined as integral of flux over RP 3,

not over S3) is ±1, and the number of D5-branes including mirror images required to cancel

the O5-charge is 2. Even if we introduced flavor D5-branes which cancel the O5-charge,

we do not obtain the desired number of fundamental representations.

The key to solve this puzzle is the fact that in our brane system O5-planes and NS5-

branes co-exist, and when an O5-plane intersects with NS5-branes it changes its RR-

charge [11 – 14]. In the brane system we consider here an O5-plane is a two dimensional

plane in 4567 space. Its worldvolume is spread along non-compact 46 directions. The

NS5-branes are also two dimensional surfaces, and if corresponding cycle, zig-zag path, on

the tiling goes through the fixed point, it shares one direction with the O5-plane.

Let us consider the conifold case as an example. The fivebrane diagram is given in

figure 5 (a). a, b, c, and d are O5-planes and the cycles µ, ν, ρ, and σ are NS5-branes.

– 8 –
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Figure 5: The example of the conifold. Here we show T2 (57) directions. µ, ν, ρ, σ are cycles of

NS5-branes and a, b, c, d are intersection points of O5-planes with D5.

Figure 6: RR-charges of four O5-planes. RR-charge assignment changes when crossing NS5-brane

cycles (µ, ν, ρ, σ) and thus depends on quadrants on 46-plane.

Each of them spreads along the following directions in 4567 space:

a, b, c, d : 46, µ, ρ : 45, ν, σ : 67. (3.3)

We see that, for example, the O5-plane a and the NS5-brane µ share one direction x4, and

they intersect along a line. The O5-plane a also intersects with NS5-brane σ along a line.

As a result, the O5-plane a is divided into two parts by the two NS5-branes µ and σ. On

the 46-plane, these two parts are represented as one quadrant and the rest (figure 5 (b)). In

general an O5-plane at an intersection of two cycles in a fivebrane diagram is divided into

two parts by two legs in the web-diagram. We call these two parts minor and major O5-

planes according to their central angles. Because the RR-charge of the O5-plane changes

when it intersects with NS5-branes, the minor and major O5-planes for the same fixed

point have opposite RR-charges to each other. This is the case for other three orientifold

planes, b, c, and d in the conifold example, and the RR-charge assignments to the four

orientifold planes depend on quadrants on 46-plane. One example is shown in figure 6.

Now let us take account of the RR-charge conservation. The simplest way to satisfy

the conservation law is to introduce four (including mirror images) D5-branes on top of

O5−-plane compensating the change of O5-plane’s RR-charge at the intersection of O5 and

NS5 (figure 7). With the assumption of the gauge anomaly cancellation, we expect one of
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Figure 7: When O5-brane intersects with NS5-brane, its RR-charge changes its sign.Moreover, in

order to conserve RR-charge, inclusion of four flavor D5-branes (including their mirrors) on top of

O5-plane are required.

the following two combinations arise at the O5-plane.

positive T-parity : + 4 , negative T-parity : + 4 . (3.4)

More generally we can introduce more flavor branes spreading over whole 46-plane. It

is also possible to transfer the excess of RR charge as a flow on the NS5-brane, and put

flavor branes off the O5-planes. These possibilities are discussed in section 5.

4. Relation to Calabi-Yau cones

4.1 Orientifold of general toric CY cones

The purpose of this subsection is to establish the relation between the RR-charge of O5-

planes and the Z2 parity of mesonic operators with the help of the T-duality between

fivebrane systems and Calabi-Yau cones.

Toric diagram. Let us start from a toric Calabi-Yau cone M described by a toric

diagram. In this paper we only consider three-dimensional Calabi-Yau manifolds. Let

vi ∈ Γ = Z
3 be the set of lattice points in the toric diagram. By SL(3,Z) transformation,

we can take the coordinate system in which the components of vi are given by

vi = (pi, qi, 1). (4.1)

The toric diagram is usually represented as a two-dimensional diagram by using the first

two components of these vectors. An example of C
3 case is shown in figure 8 (a).

We define the dual cone C∗ as the set of vectors w ∈ R
3 satisfying

vi · w ≥ 0 ∀i. (4.2)

When we consider resolutions of the toric Calabi-Yau, Kähler parameters come to the

right hand side of this inequality. In this paper we will not discuss such resolutions and

the right hand side is always zero. In such a case we do not have to use all vi to define

C∗ by (4.2), and we only need vα corresponding to the corners of the toric diagram. Here

notation α, β . . . is used to denote lattice points in the corners of toric diagram, and i, j . . .

denotes all the lattice points in the toric diagram. We further assume that the label α

– 10 –
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Figure 8: Shown here are toric diagram (a), web-diagram (b), and bipartite graph with fivebrane

diagram (c) for C3.

increases one by one as we go around the perimeter of toric diagram in counterclockwise

manner. The boundary of the dual cone ∂C∗ consists of flat faces called facets. Each facet

corresponds to each vector vα, and is defined as the set of points satisfying vα · w = 0 and

vβ ·w ≥ 0 (∀β 6= α). We denote the facet corresponding to vα by Fα. The structure of the

base manifold C∗ is conveniently expressed as a planar diagram by projecting the facets

onto a two-dimensional plane by simply neglecting the third coordinate. It is called a web-

diagram. Figure 8 (b) is an example of web-diagram for C
3. The lines in the web-diagram

represent the edges of the base manifold C∗.

We can regard the Calabi-Yau manifold as the T
3 fibration over the dual cone C∗ (4.2),

although strictly speaking some cycles of T
3 shrinks on facets as we will explain. Let

(φ1, φ2, φ3) be the coordinates in the toric fiber. We choose the period of each coordinate

to be 2π. We can regard Γ as the lattice associated with the toric fiber T
3. Namely,

we can associate points in Γ with cycles in T
3. By this identification, we can regard an

arbitrary non-vanishing vector v ∈ Γ as a generator of U(1) isometry of the T
3. We denote

the symmetry generated by v by U(1)[v]. Two flavor symmetries which do not rotate

the supercharges are U(1)[(1, 0, 0)] and U(1)[(0, 1, 0)], and R-symmetry is U(1)[(a1, a2, 1)].

When a1 and a2 are appropriately chosen this gives the R-symmetry in the superconformal

algebra [18].

On a facet Fα the cycle specified by vα in T
3 fiber shrinks and the fiber becomes T

2.

In order to parameterize the T
2 fiber on each facet, the following coordinate change is

convenient.

(φ1, φ2, φ3) = θ1(1, 0, 0) + θ2(0, 1, 0) + θ3(pi, qi, 1). (4.3)

This is equivalent to

θ1 = φ1 − pαφ3, θ2 = φ2 − qαφ3, θ3 = φ3. (4.4)

On the facet, the θ3-cycle shrinks and (θ1, θ2) is a pair of good coordinates on T
2. By

taking T-duality along these two angular coordinates we obtain fivebrane system described

by the brane tiling. The third angular coordinate θ3 is identified with the argument of the

complex coordinate x8 + ix9 in the fivebrane system.
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Figure 9: The three perfect matchings for the bipartite graph of C3 are shown.

Perfect matchings and zig-zag paths. A perfect matching is a subset of edges of

a bipartite graph such that for each vertex one (and only one) of the edges ending on

the vertex is included in the subset. Figure 9 shows the three perfect matchings for C
3.

Perfect matchings plays important roles in the connection between bipartite graphs and

Calabi-Yau geometry. See [19] for review. Given a perfect matching, we can define the

corresponding unit flow by regarding each matched edge as black-to-white flow by one. A

unit flow is a flow with source 1 at each black vertex and sink 1 at each white vertex.

Flows corresponding to perfect matchings are special kind of unit flows. We abuse the

term “perfect matchings” in the following to mean also the corresponding unit flows. The

difference of two unit flows is a conserved flow. For such conserved flows we can uniquely

define the flux across closed cycles. For a flow f and a cycle C, we denote the total flux

of f across C by 〈f,C〉. We define this flux so that if C is an up-going cycle 〈f,C〉 is the

flux of f passing C from left to right. The set of two fluxes across α and β-cycles is called

height change, and we denote it by h(f).

h(f) = (〈f,α〉, 〈f,β〉). (4.5)

(We take the α and β-cycles along x5 and x7, respectively. Also, in this paper we use

bold letters to denote α and β-cycles in order to distinguish them from α, β, . . ., which are

labels of corners of the toric diagram.)

Let us label perfect matchings by indices α′, β′, . . .. We can define “relative positions”

between two perfect matchings mα′ and mβ′ by the height change h(mα′ −mβ′), and we

can plot matchings as points on a two-dimensional lattice. An important fact is that this

set of points is nothing but the toric diagram [1, 20]. By this fact we can associate each

vertex in the toric diagram with perfect matchings. In the C
3 example, the matchings m1,

m2, and m3 in figure 9 correspond to the facets F1, F2, and F3, respectively of figure 8

(b). (We use the term “facets” not only for faces of dual cones but also for their projection

onto the web diagrams.) In general several perfect matchings may be associated with one

vertex. For a vector vi in the toric diagram, let m[vi] be one of the associated matchings.

Then the following relation holds:

h(m[vi] −m[vj]) = vi − vj. (4.6)

This equation makes sense because the third component of vi − vj always vanishes and

gives a vector in the two-dimensional lattice. Also, even though we have in general several
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perfect matchings associated with vertices vi and vj , this equation holds regardless of the

choice of perfect matchings m[vi] and m[vj ].

There are some arguments that there are bipartite graphs which do not give physical

quiver gauge theories [17]. To obtain meaningful gauge theories we need to impose the

condition that there is one and only one perfect matching associated for each corner in

toric diagrams. In the following we only consider such “good” bipartite graphs. We denote

the unique perfect matching for a corner α by mα. This one-to-one correspondence between

corners of the toric diagram and perfect matchings of the bipartite graph plays important

roles in what follows.

For a general vector v ∈ Z
3, we define m[v] in the following way. First we decompose

v into linear combination of vi as v =
∑

i aivi with integral coefficients ai. Then m[v] is

defined by

m[v] =
∑

i

aim[vi]. (4.7)

The source at black vertices and sink at white vertices of the flow m[v] are always the

same, and it is equal to the sum of the coefficients,
∑

i ai. This is nothing but the third

component of v, and thus independent of how to decompose v into vi. One should note

that if v is on the plane of toric diagram m[v] gives a unit flow. Again there are ambiguities

in m[v] associated with the choice of perfect matching m[vi] for each vi and in the way of

decomposing v into vi. The difference of two different choices of m[v], however, is always

a conserved flow with vanishing height change, and this ambiguity does not matter in the

following arguments.

Shrinking cycles and NS5-branes. By the T-duality along θ1 and θ2, edges of the

base manifold C∗, or, equivalently, external lines in the web-diagram are transformed into

NS5-branes wrapped on cycles in the dual T
2. The winding number of each NS5-brane is

determined in the following way. Let us focus on the edge of C∗ shared by adjacent two

facets Fα and Fα+1. This edge is given as the set of points satisfying

vα · w = 0, vα+1 · w = 0. (4.8)

By taking the difference of these two conditions, we obtain

(∆p,∆q) · (w1, w2) = 0, (4.9)

where ∆p = pα+1 − pα, ∆q = qα+1 − qα, and w1 and w2 are the first two components of

the vector w. Namely, the external line in the web-diagram is a line perpendicular to the

side between the corners vα and vα+1 of the toric diagram.

Let (θ1, θ2) be the coordinate of T
2 fiber on the facet Fα.

2 These coordinates are inert

under the isometry U(1)[vα]. In order to examine the behavior of the T
2 fiber near the

external line shared by Fα and Fα+1, let us consider the action of U(1)[vα+1] on the T
2.

The Killing vector vα+1 for the adjacent facet Fα+1 acts on the coordinate (θ1, θ2) as

θ1 → θ1 + ∆p t, θ2 → θ2 + ∆q t, (4.10)

2We have chosen this notation for simplicity, although strictly speaking we should write (θα
1 , θα

2 ) since

these coordinates depend to α.
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Figure 10: Some diagrams for C3 orientifold are shown. (a) shows the toric diagram. The square

box shows the choice of (2Z)2 sublattice, and the number placed at each vertex represents shift

variable (πs1, πs2) on the facet corresponding to each vertex. (b) shows the web-diagram, together

with the assignment of RR-charges on each facet. Note RR-charges change when crossing cycles of

NS5-branes, just as in the case of conifold shown in figure 6. (c) shows the bipartite graph, and

a, b, c, d denotes the position of O5-planes.

with a parameter t. The corresponding cycle, (∆p,∆q)-cycle, shrinks at the boundary

between Fα and Fα+1. By the T-duality transformation along θ1 and θ2, this shrinking

cycle is transformed to NS5-brane wrapped on (∆q,−∆p)-cycle. In the bipartite graph,

these cycles wrapped by the NS5-branes are represented as the zig-zag paths. (See figure 8

(c). There cycles of NS5-branes are denoted by µ, ν, ρ.)

Orientifold. Let us consider orientifold M/Z2. We only consider Z2 which is a subgroup

of the U(1)3 isometry of M. As we see below this type of Z2 gives orientifolded fivebrane

systems with O5-planes, which we are interested in. We can specify the Z2 action by

specifying a Killing vector V for U(1) symmetry which include the Z2 as its subgroup.

Without loss of generality we assume that V is a primitive vector in the integral lattice.

The generator of Z2 is given by

(φ1, φ2, φ3) → (φ1, φ2, φ3) + πV. (4.11)

Two vectors V and V ′ with components different by even integers define the same Z2.

Since φ3 is identified with the argument of the coordinate x8 + ix9, third component of V

is 1 (modulo 2). This means that the vector V can be represented as a point on the toric

diagram. In order to define the orientifold we only need to specify the first two components

of V mod 2. This is graphically represented in toric diagram by choosing (2Z)2 lattice.

When we draw the toric diagram of an orientifolded toric Calabi-Yau, we will use squares

to represent points in the (2Z)2 lattice while other points are represented as circles. An

example of such a toric diagram for an orientifold of C
3 is given in figure 10 (a). We have

four choices of sublattice (2Z)2, but in this example, three of them are equal up to SL(2,Z)

transformation, so only one of them is shown. The other possible choice of (2Z)2 will be

shown later in figure 11.

From the Z2 action on φi given in (4.11), together with definition of θ in (4.4), we can

– 14 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
8

easily obtain the following action on the T
2 fiber on each facet as

(θ1, θ2) → (θ1 − πs1, θ2 − πs2), (4.12)

with the shift variables s1 and s2 on each facet given by

sα = vα − V. (4.13)

Note that the shift depends on facets Fα, and this formula can be used to determine

the shift for each facet. In the example in figure 10 (a), the shift of the T
2 fiber in each

facet is given beside the corresponding vertex.

T-duality of orientifolds. In order to relate a toric Calabi-Yau cone to a fivebrane

system, we define Cartesian-like coordinate as follows. Let x4 and x6 be coordinates pa-

rameterizing ∂C∗, the plane of web-diagram, and ρ ≥ 0 be the “distance” from the boundary

∂C∗. We do not need precise form of these coordinates because we are only interested in the

topological structure. We combine ρ and φ3 to define x8 and x9 by x8 + ix9 = ρeiφ3 . The

coordinates x4, x6, x8, and x9 defined above are identified with the same coordinates in

the fivebrane system, while θ1 and θ2 are the dual coordinates to the compact coordinates

x5 and x7. The Z2 action on these coordinates is given by

(x4, θ1, x
6, θ2, x

8, x9) → (x4, θ1 − πs1, x
6, θ2 − πs2,−x

8,−x9). (4.14)

If both s1 and s2 are even integers, there is a codimension-2 fixed plane, O7-plane. Other-

wise, there is no fixed plane.

By the T-duality along the compact coordinates θ1 and θ2, the orientifold is trans-

formed to another orientifold with the geometric Z2 action

(x4, x5, x6, x7, x8, x9) → (x4,−x5, x6,−x7,−x8,−x9). (4.15)

This is the orientifold of the fivebrane systems which we discuss in this paper. This ori-

entifold has four O5-planes at (x5, x7) = (0, 0), (π, 0), (0, π), and (π, π). There is no

dependence on (s1, s2) in the geometric Z2 action (4.15).

The information of s1 and s2 is encoded in the RR-charges of four O5-planes. If both

s1 and s2 are even integers, there is an O7-plane on the Calabi-Yau side, and the dual

configuration contains four O5-planes with the same sign of RR-charge as the O7-plane.

Otherwise, we have no O7-plane on the Calabi-Yau side, and two O5+ and two O5− in the

fivebrane system at the position depending on (s1, s2) [21]. The relation between (s1, s2)

and the charges of O5-planes are summarized below.

(s1, s2) = (0, 0) :
[
+ +
+ +

]
or

[
− −
− −

]
, (4.16)

(s1, s2) = (1, 0) :
[
+ −
+ −

]
or

[
− +
− +

]
, (4.17)

(s1, s2) = (1, 1) :
[+ −
− +

]
or

[− +
+ −

]
, (4.18)

(s1, s2) = (0, 1) :
[+ +
− −

]
or

[− −
+ +

]
. (4.19)
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By the T-duality relations (4.16-4.19) we define the map σ from charge assignments Q to

(Z2)
2 valued vector s,

σ : Q→ s (4.20)

If we use the notation of (2.1), then explicit expression for s = σ(Q) is given by

(−1)s1 =

∫

α
Q, (−1)s2 =

∫

β
Q. (4.21)

Here α (resp. β) denotes Z2-symmetric α-cycle (resp. β-cycle) of T
2 which passes through

two O5-planes. We have two such Z2-symmetric α-cycles (resp. β-cycles), but both of

these two gives the same answer, because the product of all four charges is always +1. The

relations in (4.21) show that we can regard (s1, s2) as the relative charges among four RR

charges.

For two charge assignments Q1 =
[
q14 q13

q11 q12

]
and Q2 =

[
q24 q23

q21 q22

]
, we define their product

by componentwise multiplication:

Q1 ·Q2 = [q14q24 q13q23

q11q21 q12q22
]. (4.22)

Then you can directly verify the formula

σ(Q1 ·Q2) = σ(Q1) + σ(Q2)mod 2. (4.23)

If we are given the geometric action of Z2 on a Calabi-Yau cone, we obtain (s1, s2),

which can be regarded as relative charges of O5-planes, on each facet by the relation (4.13).

Conversely, given relative charges, we always have two possible charge assignments as listed

in (4.16)–(4.19), which are related to each other by total charge flip. We cannot choose

one of them only with the information of the geometric action of Z2.

Instead of starting from the geometric Z2 action on the Calabi-Yau, let us assume that

we are given a brane tiling with fixed points specified, and that we know charge distribution

on one facet. With this information, we can reconstruct all the information about fivebrane

system and Z2 action on the Calabi-Yau cone in the following way.

We first reconstruct the toric diagram and the web-diagram by using zig-zag paths.

Let Fα and Fα+1 be two adjacent facets. If the side between two corners vα and vα+1

includes n edges, there are n parallel zig-zag paths corresponding to the external lines

between facets Fα and Fα+1. Let Zα+1,α be the union of these n zig-zag paths.

If the charge assignment Qα =
[qα4 qα3

qα1 qα2

]
in the facet Fα is given, we can determine

Qα+1 in the next facet Fα+1 by flipping the RR-charges of fixed points which are passed

through by Zα+1,α.

This relation between Qα and Qα+1 is expressed as

Qα+1 = Qα · ρ(Zα+1,α). (4.24)

Here ρ(Zα+1,α) is the charge assignment such that if a fixed point is on a zig-zag path in

Zα+1,α, the charge of the fixed point is −1 while the charge is 1 otherwise.

Let us take the orientifold of C
3 shown in figure 10 as an example. By using the

bipartite graph (c), we can draw the corresponding toric diagram and web-diagram. The

– 16 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
8

toric diagram has three corners and correspondingly there are three facets in the web-

diagram. We assume that we know the charge distribution on one of the facets, say, F1.

The charge assignments on other facets are determined as follows. If we move from F1

to F2 on the web-diagram, we cross the NS5-brane µ. The figure 10 (c) shows that this

NS5-brane intersects with O5-plane b and c. and we can obtain the charge assignment

on F2 from that on F1 by flipping the RR-charges of b and c. More formally, we have

Q1 =
[− −
+ +

]
, Q2 =

[− +
+ −

]
, and ρ(Z2,1) =

[+ −
+ −

]
, and this satisfies the relation (4.24). By

repeating this procedure, we obtain charge assignments on all the facets.

The relation (4.24) is consistent with the relation (4.13). In order to see this, we use

the following relation, which is proved in appendix A.1:

σ(ρ(Zα+1,α)) = h(Zα+1,α)mod 2. (4.25)

By using (4.6), (4.23), and (4.25) the relation (4.24) is mapped by σ to

sα+1 − sα = vα+1 − vα, (4.26)

and this shows that the relation (4.24) is “integrable”, and consistently determine the

vector V modulo 2.

Z2 parity of mesonic operators. Mesonic operators in a gauge theory are represented

as closed paths in the brane tiling. Let C[O] be the closed path corresponding to a mesonic

operator O. Mesonic operators are important when we relate gauge theories and toric

Calabi-Yau cones because we can regard mesonic operators as holomorphic monomial func-

tions in the Calabi-Yau cone. In other words, we can use (an appropriate subset of) mesonic

operators as coordinates in the Calabi-Yau. To establish the relation between mesonic op-

erators and monomial functions in the toric Calabi-Yau, we can use charges associated

with U(1)3 symmetry. For both mesonic operators and monomial functions we can assign

three charges, and by these charges we can establish one-to-one correspondence between

mesonic operators and monomial functions.

As we mentioned above, we can specify U(1) symmetry by a vector v ∈ Γ. We can

determine the charges of mesonic operators for a given U(1) by the following relation

U(1)[v] charge of an operator O = 〈m[v], C[O]〉, (4.27)

where 〈f,C〉 is the flux of f across C defined above (4.5). Because the path for a gauge

invariant mesonic operator is closed, the ambiguity in the definition of m[v] does not affect

the flux.

As a special case of this relation, the Z2 parity of a mesonic operator O under the

transformation (4.11) can be obtained from the U(1)[V ] charge of the mesonic operator.

If the charge is even (odd), the parity is + (−). In other words, we can determine the Z2

parity P [O] for an operator O by the mod 2 flux of the unit flow m[V ] across C[O].

P [O] = (−1)〈m[V ],C[O]〉. (4.28)

We refer to the unit flow m[V ] as a parity flow.
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Figure 11: Another example of orientifold of C3 is shown. See also figure 10. In this case the

square vertex is not contained in the lattice points of the toric diagram, and the parity flow is

obtained as a linear combination of perfect matchings.

If the toric diagram includes square vertices, we can use one of perfect matchings

associated with one of square vertices in the toric diagram as a parity flow. Otherwise,

we have to use linear combination of perfect matchings. One such example is shown in

figure 11.

4.2 T-parity and RR-charge

The purpose of this subsection is to clarify the relation between the T-parity and the RR-

charge by comparing the formula (4.28) for Z2 parity obtained in the previous subsection

and the rules proposed in [10].

Superpotential rule. We can easily reproduce the superpotential rule (Rule 4) from the

formula (4.28). Because terms in the superpotential correspond to cycles enclosing only

one vertex in a bipartite graph, the rule is equivalent to the statement that the Z2 parity

of a mesonic operator O is given by the flux of an odd flow, flow with odd source and sink

at each vertex, across the path C[O]. Because m[V ] is a unit flow it correctly gives the Z2

parity satisfying the superpotential rule.

Product rule. Next we are going to reproduce the product rule (Rule 3). Let us define

ρ(mα) as the charge assignment such that if a fixed point is on the perfect matching mα

the charge of the fixed point is −1, while the charge is +1 otherwise. This definition is

similar to that of ρ(Zα+1,α), and we have the following relation:

ρ(Zα+1,α) = ρ(mα+1) · ρ(mα). (4.29)

In order to understand this relation, recall (4.6) says

mα+1 −mα = Zα+1,α mod (boundaries), (4.30)

since winding numbers, or height function of both sides of this equation coincides. By

definition, this almost proves (4.29). The only remaining problem is the possible contribu-

tion to ρ from boundary terms, which are conserved flows with vanishing height change.

Namely, boundaries might pass through fixed points and contribute to ρ. It turns out, how-

ever, that this contribution is absent since it is impossible for boundaries to pass through

fixed points and be Z2-symmetric at the same time. This proves (4.29).
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Now if we use (4.29), we can rewrite the relation (4.24), which represents the RR-charge

flip of O5-planes at intersections with NS5-branes, into the following form:

Qα+1 · ρ(mα+1) = Qα · ρ(mα). (4.31)

This relation means that Qα · ρ(mα) in fact does not depend on facets, and it is possible

to define facet-independent charge T ′ by

T ′ = Qα · ρ(mα). (4.32)

We propose the charge assignment T ′ defined by this equation is nothing but the T-parity

T .

For this charge T ′ to be acceptable as the T-parity, we should confirm that T ′ defined

in (4.32) combined with the formula (2.1) gives the same Z2 parity as (4.28) for mesonic op-

erators which are described by Z2 symmetric cycles. This can be easily shown by rewriting

the formula (4.28) in terms of T ′. We first use (4.13) and rewrite (4.28) as

P [O] = (−1)〈mα ,C[O]〉(−1)〈m[sα],C[O]〉. (4.33)

In the appendix A.1, we prove the following two formulae:

(−1)〈mα ,C[O]〉 =

∫

C[O]
ρ(mα), (4.34)

and

(−1)〈m[sα ],C[O]〉 =

∫

C[O]
Qα, (4.35)

where
∫
C[O] means the product of charges of fixed points passed through by the path C[O],

as defined in (2.1). The first says that if mα is the perfect matching for α, which is Z2

symmetric, and if C[O] is a Z2 symmetric path, only the fixed points contribute to the mod

2 intersection number. Substituting (4.34) and (4.35) into (4.33) we immediately obtain

P [O] =

∫

C[O]
T ′, (4.36)

and this is nothing but the formula (2.1) with T replaced by T ′.

Note that not only T = T ′ but also T = −T ′ give the same Z2 parity of mesonic

operators, and we still have the following two possibilities:

T = ±T ′. (4.37)

In order to determine the overall sign of the T-parity, we need additional information,

or assumption about the relation between overall sign of RR-charge and overall sign of

T-parity.

The reason why we cannot simply identify RR-charges and T-parities is that as we

mentioned above the RR-charge may change depending on the facets. This is, however,

only the case for the O5-planes on edges. If an O5-plane is inside a face, its RR-charge

is everywhere the same, and we can simply identify the RR-charge as T-parity. So, let us

adopt the following assumption:
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• For fixed points on faces, the T-parity is the same as the RR-charge of the O5-plane.

If there exist fixed points on faces, this condition uniquely determine the T-parity as

T = T ′ = Qα · ρ(mα). (4.38)

There is a simple relation among RR-charge and T’-charge of O5-planes. The defini-

tion (4.32) of T ′ can in fact be rewritten in the following form which does not directly refer

to perfect matchings:

Rule 6 (Angle rule).

When O5-plane consists of two parts with opposite RR-charges, the T ′ charge of the O5-

plane is the same as the RR-charge of the O5-plane occupying the major angle.

This can be shown from (4.32) and the following theorem proved in the appendix A.3:

Theorem 1. Let I be an edge in a bipartite graph, and {Fα, Fβ , . . . , Fγ} be the set of

facets whose associated perfect matchings include the edge I. Then, facets in the set

{Fα, Fβ , . . . , Fγ} form one continuous region in the web-diagram, and the central angle

of the region is always a minor angle.

The angle rule (Rule 6) shows that the T ′-charge of an O5-plane is determined by the

local information about the O5-plane without using charges of other orientifold planes. If

we assume this is the case for the T-parity, it is natural that the T-parity for a fixed point

is always determined by (4.38) regardless of the existence of O5-planes inside faces.

In the next section, we give another reason why we should choose the overall sign of

T-parity as the equation (4.38).

5. Flavor branes

5.1 Quark mass terms

In the previous section we discussed only the mesonic operators made of bi-fundamental

fields. Let us turn to quark fields in the (anti-)fundamental representation, which emerge

when we introduce flavor branes.

We here only discuss flavor D5-branes parallel to the O5-planes in table 1. In this sub-

section we do not consider orientifolds. By T-duality transformation they are transformed

into D7-branes wrapped on divisors in the toric Calabi-Yau geometry. In [9] graphical

representation of such flavor D7-branes and corresponding superpotential terms are pro-

posed. A D7-brane wrapped on a divisor in the Calabi-Yau 3-fold is represented as a curve

connecting two punctures on the NS5-brane worldvolume, which is referred to as Riemann

surface in [9]. In fivebrane diagrams, these two punctures are represented as two cycles,

and the curve connecting two punctures corresponding to an intersection of these cycles.

This intersection point is nothing but the flavor D5-brane worldvolume projected onto the

57-plane.

On the web-diagram, a flavor brane is represented as a fan between two external legs

corresponding to the two zig-zag paths (figure 12(a)). When we specify two legs, there
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Figure 12: (a) shows a flavor brane stretched between two legs in a web-diagram. In the internal

57-space, the D5-brane is attached to the NS5-branes. In the corresponding fivebrane diagram (b)

we use an arc to represent the flavor brane. As is shown in (c) there are two possible flavor branes

associated with a pair of legs in the web-diagram. We call them minor and major branes.

are always two fans defined by these legs. One has minor central angle and the other has

major central angle. We call corresponding two possible flavor branes for a given pair of

external legs minor branes and major branes (figure 12(c)). In order to distinguish these

two types of flavor branes in fivebrane systems, we represent flavor branes as arcs at the

intersection of cycles (figure 12(b)). Arcs are drawn in the angles corresponding to the fans

on the web-diagram. We can define these angles because the directions of the cycles are

the same as the directions of external legs in the web-diagram.

Minor flavor branes. In [9] the following superpotential is proposed for quarks q and

q̃ emerging by the introduction of flavor branes placed on an intersection I:

W = q̃ΦIq, (5.1)

where ΦI is the bi-fundamental field associated with the intersection I. This superpotential

corresponds only to minor flavor branes as will be confirmed in the following.

If we assume that quark fields are supplied from D3-D7 strings in the Calabi-Yau

perspective, the fundamental fields must become massless when D3-branes coincide with

the D7-branes. Namely, massless loci of quark fields in the moduli space should be identified

with the worldvolume of the D7-branes. (In this paper we consider only the Coulomb

branch, in which quarks have vanishing vevs.)

When the quark mass term is given by (5.1), the massless locus is given by ΦI = 0.

(Following the usual procedure to obtain Calabi-Yau geometry, we here treat all the gauge

groups as U(1)). In order to determine the corresponding divisor in the moduli space, we

should solve the F-term conditions imposed on bi-fundamental fields. The solution is given

by [20]

ΦI =
∏

α′∋I

ρα′ , (5.2)

where ρα′ are complex fields defined for each perfect matching α′, and α′ ∋ I means that

the product is taken over all the perfect matchings which include the edge I. By this
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relation we can describe the moduli space of quiver gauge theory as the moduli space of

gauged linear sigma model (GLSM) with the fields ρα′ . The equation (5.2) means that the

massless locus is given by the union of loci defined by ρα′ = 0. Because we are interested

in divisors, we do not take care of subspace of moduli space with dimension less than 2.

We only focus on the submanifold M′ ⊂ M which is defined as the complement of the

submanifold corresponding to the legs and the center of the web-diagram. We can show

that in this submanifold GLSM fields ρα′ which do not correspond to corners of the toric

diagram do not vanish. This allow us to forget about such fields and we have only to take

care of fields ρα, which correspond to corners in the toric diagram. The following theorem

can be proved:

Theorem 2. In the subspace M′, the divisor corresponding to a facet Fα is given by ρα = 0

in the GLSM.

The proof is given in appendix A.2. With this theorem we obtain

massless locus =
⋃

α∋I

Fα, (5.3)

where we use Fα for the divisor corresponding to the facet. The theorem 1 means that this

is nothing but the worldvolume of the minor branes associated with the edge I.

Major flavor branes. In order to obtain the worldvolume of major flavor branes, we

need different quark mass terms from (5.1). Let us assume the following form of quark

mass terms:

W = Q̃OQ, (5.4)

where O is composite operator made of bi-fundamental fields. We denote quark fields

provided by major flavor branes by Q and Q̃ while we write q and q̃ the quark fields for

minor branes. From the theorem 1, the worldvolume of major flavor branes associated with

the edge I is given by

major branes =
⋃

α∋/ I

Fα. (5.5)

where α∋/ I means that the product is taken over all the perfect matchings which do not

include the edge I and are associated with corners of the toric-diagram. By the theorem 2

this is given by O = 0 with the operator O defined by

O =
∏

α′∋/ I

ρα′ . (5.6)

In order to write the superpotential (5.4), we need to rewrite the operator O in terms of

bi-fundamental fields in the gauge theory. It is easy to see that

O =
∏

J∈k,J 6=I

ΦJ , (5.7)
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Figure 13: Closed paths representing quark mass terms for minor flavor branes (a) and major

flavor branes (b) are shown.

SU(N) × SU(N)′

bi-fund. Φi
I j′( , )

minor brane qi′(1, ), q̃i( , 1)

major brane Qi( , 1), Q̃i′(1, )

Table 3: The representations of quark fields for two types of flavor branes are shown.

where k is one of two endpoints of the edge I, and J ∈ k means edges sharing the vertex

k as their endpoints. When we regard this as the operator in the gauge theory with non-

Abelian gauge group the constituent fields should be ordered so that the color indices of

adjacent fields match. The operator O is graphically represented as the path consisting of

solid arrows in figure 13(b). In the definition of the operator O there are two choices of

the endpoint of the edge I. Let OB and OW be the two operators obtained by choosing

black and white endpoints of I, respectively. Because the superpotential of bi-fundamental

fields includes

W = tr(ΦIOB) − tr(ΦIOW ), (5.8)

and the F-term condition of ΦI gives

OB = OW , (5.9)

the superpotential (5.4) does not depend on the choice between OB and OW .

Let us compare the superpotentials (5.1) for minor branes and (5.4) for major branes.

Wminor = q̃iΦ
i
I j′q

j′ , Wmajor = Q̃i′O
i′

jQ
j. (5.10)

These two are represented as cycles made of dashed and solid arrows in figure 13. In (5.10)

color indices are explicitly written. Notice that the existence of these terms requires the

chirality of the quark fields should be opposite between minor and major flavor branes. If

we have a bi-fundamental field in the representation ( , ) at the edge I, minor branes

give quarks in the representation ( , 1) and (1, ) while major branes give ones in ( , 1)

and (1, ) (table 3). This difference is important when we use flavor branes to cancel the

gauge anomaly associated with orientifold planes. In figure 14, the difference of quark

representations is expressed by the orientation of dashed arrows.
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Figure 14: Graphical representation of minor branes (a) and major branes (b), and corresponding

fields are shown.

SU(N) SO(k + 4) Sp(k/2)

Φ 1 1

q 1

Q 1

Table 4: Fields arising at the fixed point with positive T-parity are shown. SU(N) is the gauge

group and SO(k + 4) × Sp(k/2) is the flavor symmetry.

5.2 Orientifold planes and flavor branes

As we mentioned in section 3, if an O5-plane is divided into major and minor O5-planes

these two parts carry opposite RR-charges to each other. One way to compensate the

charge flip of O5-planes is to introduce appropriate number of flavor branes coinciding

with the O5-planes. Another way to realize the charge conservation using RR-charge flow

along NS5-branes is discussed in the next subsection.

Let us first consider the case with positive T-parity. In this case, by the angle rule

(Rule 6) with T ′ identified with T , the minor and major O5-planes carry negative and

positive RR-charges, respectively. We can match the RR-charges of minor and major parts

by introducing k + 4 minor branes and k major branes. In the parent theory these flavor

branes provide quarks shown in table 3. By the orientifold projection, the two gauge groups

SU(N) and SU(N)′ on the both sides of the edge I are identified, and the bi-fundamental

field Φi
Ij′ in ( , ) representation becomes field Φ

{ij}
I in the symmetric representation

of SU(N). The quark fields q and q̃, and Q and Q̃ are identified, and independent

fields are q in and Q in . (Table 4)

The superpotential is given by

W(T=+) = δABq
A
i Φ{ij}qB

j + JCDQ
CiOijQ

Dj, (5.11)

where O is the composite operator defined in the parent theory by (5.7). The flavor

symmetry is SO(k+4)×Sp(k/2), and δAB and JCD are the symmetric and antisymmetric

invariant tensors of the flavor groups SO(k + 4) and Sp(k/2), respectively.

The fields arising at the fixed point contribute to the SU(N) gauge anomaly by

d + (k + 4)d + kd = Nd , (5.12)
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SU(N) SO(k + 4) Sp(k/2)

Φ 1 1

q 1

Q 1

Table 5: Fields arising at the fixed point with negative T-parity are shown. SU(N) is the gauge

group and SO(k + 4) × Sp(k/2) is the flavor symmetry.

and this is the same as the contribution of the bi-fundamental field in the parent theory.

Therefore, if the parent theory is anomaly free before the introduction of flavor branes, the

daughter theory is also automatically anomaly free.

If the T-parity is negative, the minor and major O5-planes carry positive and negative

RR-charges, respectively. We can match the RR-charges of two parts by introducing k

minor and k+4 major flavor branes. In the parent theory, in addition to the bi-fundamental

field in ( , ), we have quark fields shown in table 3. By the orientifold projection, these

fields become an antisymmetric tensor field Φ[ij] in , q in , and Q in . The flavor

symmetry is SO(k + 4) × Sp(k/2). The gauge and flavor quantum numbers are shown in

table 5.

The superpotential is given by

W(T=−) = δABqi
AOijq

j
B + JCDQCiΦ

[ij]QBj . (5.13)

As well as the case of positive T-parity, the fields arising at the fixed point contribute

the SU(N) gauge anomaly by the same amount as the bi-fundamental field in the parent

theory

d + (k + 4)d + kd = Nd , (5.14)

and the anomaly cancels if so does the anomaly in the parent theory before introducing

the flavor branes.

Note that in the above we assumed that T = +T ′ when we use Rule 6 to determine

the RR-charge of minor and major O5-planes. If we take the opposite sign T = −T ′, the

chirality of quark fields arising at the fixed points are reversed, and the gauge anomaly

does not cancel. This is another reason why we should take T = +T ′.

5.3 Flow of flavor brane charge

In the previous subsection we discuss the relation between RR charge conservation and

gauge anomaly cancellation in the case of orientifold. We show that if there are appro-

priate number of flavor branes coinciding with O5-planes the gauge anomaly cancels. The

requirement of the existence of flavor branes coinciding with O5-planes, however, is too

restrictive. We can loosen this condition by using the flow of the D5-brane charge along

NS5-branes.

Let us first consider un-orientifolded case. As an example let us suppose that we

introduce Nf minor branes at an edge I. In general we need to introduce more flavor branes

to realize the charge conservation and the gauge anomaly cancellation. A simple way is
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Figure 15: D5-brane charge carried by one NS5-brane is transfered into another NS5-brane by

flavor D5-branes. The charge conservation requires p+ q = Nf = r + s.

to introduce the same number of major flavor branes at the same edge. Then the quark

spectrum becomes vector-like and the gauge anomaly cancels. The charge conservation of

flavor branes is also obvious. This is, however, not the unique way to fulfill these consistency

conditions.

Look at figure 15. It shows Nf minor flavor branes between two external legs in the

web-diagram. These flavor branes carry D5-brane charge Nf , and the charge is supplied

from one of the NS5-branes and flows into another NS5-brane on the other side. Even if

we do not introduce major flavor branes at the edge I, the D5-charge can flow on NS5-

branes, and it can be consistently conserved if we arrange the flow in the network of NS5-

branes appropriately. In the example shown in figure 15, the following charge conservation

condition must hold:

p+ q = Nf = r + s, (5.15)

where p, q, r, and s are the D5-charges flowing on NS5-branes as shown in figure 15.

The flow of the D5-brane charge on NS5-branes are graphically described as flows along

cycles in fivebrane diagrams. At intersections, these D5-charges can be transfered from one

cycle to another, and the amount of the transfered charge is determined by the numbers of

the minor and major flavor branes. The direction of the charge transfer is represented as

arrows on the arcs in the diagram. The supersymmetry requires these arrows are always in

the same direction because a flow in the opposite direction means that the corresponding

flavor branes carry negative RR-charge. We take the convention in which all the arcs are

counter-clockwise.

The charge carried by cycles must be taken into account when we determine the charge

of color D5-branes, the numbers assigned to faces in the bipartite graph. The number

assigned to each face in a fivebrane diagram must be determined so that the difference of

numbers assigned to adjacent faces is equal to the flow along the cycle shared by the faces.

See also figure 4. In the example of figure 15 (b), the two numbers N1 and N2 must satisfy

N2 −N1 = p− s = r − q. (5.16)
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Figure 16: The flow on cycles and the transfer at intersections are uniquely determined by the

charge assignment to faces.

If the conditions such as (5.15) are satisfied at each intersection, we can consistently de-

termine the charges of faces.

Generalization to orientifolds is straightforward. When we consider charge flow along

cycles, we treat a positive O5-plane just like four coincident flavor branes because O5+

transfers the charge by +2 from one cycle to another while O5− transfers charge −2 in

the opposite direction. We should also impose the Z2-symmetry on the flow. Because the

D5-brane charge does not change its sign by the orientifold flip, the flow of the D5-brane

charge should be invariant under the rotation of the diagram by angle π. See figure 18 for

an example.

5.4 Charge conservation and anomaly cancellation

In this section we prove that if a fivebrane system respects the D5-brane charge conservation

law the gauge anomalies of the corresponding quiver gauge theory cancel.

In order to give a number assignment to faces, cycles, and flavor branes so that the D5-

brane charge conserves, we should first assign numbers to faces in fivebrane diagrams. In a

fivebrane diagram, there are two kinds of faces: faces corresponding to faces in the bipartite

graph and ones corresponding to vertices in the bipartite graph. We assign numbers to

both these two types of faces. At this step we have no restriction except that the numbers

assigned to faces of the bipartite graph must be non-negative.

Once we assign numbers to faces in the fivebrane diagram, the numbers for each seg-

ment in cycles are uniquely determined by the charge conservation law. The number

assigned to a part of a cycle shared by two faces is given by the difference of the charges

assigned to the two faces. (figure 4)

Finally, after we obtained all the charges assigned to cycles in this way, we determine

the charge transfer between two intersecting cycles at every intersection by the charge

conservation relation such as (5.15). For the two intersection A and B in figure 16, the

flows are

MA = N1 +N2 − n1 − n2, MB = N1 +N3 − n2 − n3. (5.17)
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These numbers gives the difference between numbers of minor and major branes inserted

at each intersection.

MA = Nminor
A −Nmajor

A , MB = Nminor
B −Nmajor

B . (5.18)

It may be convenient to draw arcs for both minor and major flavor branes and assign them

the numbers Nminor and Nmajor to embed all the information of the brane system in the

diagram. In figure 16 we show only the net charge transfer at each intersection.

Let us confirm that the SU(N1) anomaly cancels in the example shown in figure 16.

The chiral multiplets arising at the intersection A belong to the following representations

of gauge group SU(N1) × SU(N2) × SU(N3):

( , , 1) +Nminor
A [( , 1, 1) + (1, , 1)] +Nmajor

A [( , 1, 1) + (1, , 1)] (5.19)

These contribute the SU(N1) anomaly in the unit of d by

−N2 +Nminor
A −Nmajor

A = −N2 +MA = N1 − n1 − n2. (5.20)

At the intersection B, we have the following chiral multiplets

( , 1, ) +Nminor
B [( , 1, 1) + (1, 1, )] +Nmajor

B [( , 1, 1) + (1, 1, )], (5.21)

and these contribute to the SU(N1) anomaly by

N3 −Nminor
B +Nmajor

B = N3 −MB = −N1 + n2 + n3. (5.22)

In the anomalies (5.20) and (5.22), the contributions of N2 and N3 have already canceled.

Furthermore, if we add these two contributions (5.20) and (5.22) the contribution of n2

cancels. Similarly, if we sum up all the contribution from corners of the face for the

gauge group SU(N1), all contributions cancel, and we conclude that number assignments

satisfying the D5-brane charge conservation law always give anomaly-free gauge theories.

In the case of orientifolds, we must impose the Z2 invariance to the numbers assigned

to faces. If a number assignment to faces is Z2 invariant, the other charges assigned to

cycles and intersections are also automatically Z2 invariant. The charge transfer at a fixed

point between two cycles intersecting at the fixed point is always even integer. Let M be

the charge transfer.

If the T-parity of the O5-plane is positive, the major O5-plane is positive and the

minor O5-plane is negative. Because the flow M is the difference of RR-charges of the

minor part and the major part, it is given by

M = (Nminor − 2) − (Nmajor + 2) = Nminor −Nmajor − 4, (5.23)

where Nminor and Nmajor are the numbers of branes coinciding the minor and major O5-

planes, respectively. The chiral multiplets arising at the O5-plane and their contribution

d to the SU(N) anomaly are

+Nmajor +Nminor , d = (N + 4) +Nmajor −Nminor = N −M. (5.24)
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Figure 17: Two examples of fivebrane diagrams are shown.

If the T-parity of the O5-plane is negative, the major O5-plane is negative and the

minor O5-plane is positive. The charge transfer is given by

M = (Nminor + 2) − (Nmajor − 2) = Nminor −Nmajor + 4. (5.25)

The chiral multiplets and their contribution to the anomaly are

+Nmajor +Nminor , d = (N − 4) +Nmajor −Nminor = N −M. (5.26)

Because both (5.24) and (5.26) are the same as the anomaly in the parent theory without

orientifolding, the anomaly in the orbifold theory cancels if the parent theory with the

same number assignment is anomaly free. Therefore, as the un-orbifolded case, a charge

conserving number assignment always gives an anomaly-free gauge theory.

5.5 Examples

Before ending this section, we give a few examples of fivebrane systems.

Let us first consider the simplest example, C
3 tiling without O5-planes. (figure 17(a))

The fivebrane diagram includes three faces. The hexagonal face with number N being

assigned corresponds to gauge group SU(N). We label the three intersections by X, Y ,

and Z, and we use the same letters for the corresponding bi-fundamental fields. We assign

a and b to the two triangular faces corresponding to the black and white vertices in the

bipartite graph. The charge conservation uniquely determines the flow along cycles and

the transfer at intersections. The transfer at three intersections are all equal and given by

M = 2N − a− b. (5.27)

For simplicity let us assume that M is positive and we introduce only minor flavor branes.

Then we have the field content in table 6. The superpotential of this theory is

W1 = tr(XY Z − ZY X) + tr(q̃XXqX) + tr(q̃Y Y qY ) + tr(q̃ZZqZ). (5.28)

By taking T-duality transformation, this system becomes D7-D3 system in C
3. We

can identify the diagonal components of X, Y , and Z as the position of D3-branes. Let us
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SU(N) U(M)X U(M)Y U(M)Z

X, Y , Z adj 1 1 1

qX 1 1

q̃X 1 1

qY 1 1

q̃Y 1 1

qZ 1 1

q̃Z 1 1

Table 6: The matter content of the gauge theory realized on the fivebrane system figure 17(a).

SU(N) U(M) U(M)′

X, Y , Z adj 1 1

QZ 1

Q̃Z 1

qZ 1

q̃Z 1

Table 7: The matter content of the gauge theory realized on the fivebrane system in (b) of

figure 17. U(M) and U(M)′ are flavor symmetries realized as gauge symmetry on major and minor

flavor branes, respectively.

focus on one of the D3-branes and treat the bi-fundamental fields as complex coordinates

in C
3. The massless loci for quarks are given by X = 0, Y = 0, and Z = 0. On the web-

diagram these are represented as three facets. The numbers of D7-branes wrapped on the

corresponding three divisors are all equal, and given by (5.27). This does not mean that

a system with different numbers of D7-branes wrapped on these divisors is inconsistent.

For example, it is obviously possible to wrap D7-branes on only one of these divisors. It

is just a stack of parallel D7-branes in the flat spacetime. The equality of the numbers of

D7-branes on the three divisors is required not for the consistency of the system but for

the possibility to transform the system to a fivebrane system. This fact implies that if we

want to study all the possible D7-brane configurations in Calabi-Yau cones by means of

brane tilings, we need to generalize the brane system by including other kinds of branes.

The second example (figure 17(b)) is C
3 with different flavor branes. We assign all the

faces the same numberN . Then the transfer among cycles at each intersection vanishes. We

can, however, introduce the same number of major and flavor branes at each intersection.

Let us consider the case with M major and M minor flavor branes at the intersection Z.

The field content is shown in table 7. The superpotential is given by

W2 = tr(XY Z − ZY X) + tr(Q̃ZXYQZ) + tr(q̃ZZqZ). (5.29)

On the web-diagram, all the three facets are wrapped by M flavor branes. The major

branes are wrapped on two facets and the minor branes are wrapped on the other. This

means that by taking T-duality we obtain D7-branes wrapped on the same divisor as the
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Figure 18: A fivebrane realization of the supersymmetric Georgi-Glashow model, which is a famous

example of models of dynamical supersymmetry breaking. (a) is the fivebrane diagram and (b) is

the corresponding toric diagram.

case of the first example. The difference between two brane configurations is Wilson lines on

the D7-branes. In the fivebrane system the position of flavor branes on the T
2 is different.

This difference is transformed by the T-duality to the difference of the Wilson lines on

the D7-brane worldvolumes. The effect of the Wilson lines may be interpreted as a mass

deformation of the theory. We can indeed deform the first example into the second one by

adding the following quark mass term to the superpotential (5.28):

Wadd = − tr(q̃Y qX). (5.30)

If we eliminate qX and q̃Y from W1 +Wadd by using the F-term conditions and identify q̃X
and qY with Q̃Z and QZ we obtain the superpotential (5.29) for the second example.

Finally, let us consider an example with O5-planes. As is pointed out in [10], it

is easy to make models leading to dynamical supersymmetry breaking by orientifolded

brane tilings. As examples they give two brane realizations of the supersymmetric Georgi-

Glashow model [22]. Figure 18 shows fivebrane diagrams of one of the models based on

C
3/Z6 geometry. This fivebrane diagram includes six hexagonal faces with integers 0, 0,

0, 1, 5, and 5 assigned to each. These faces give the gauge group Sp(0)× SU(0)× SO(1)×

SU(5) ∼ SU(5). We also have 10 from the fixed point at the center and 5 from the

contacting point of the SU(5) face and the SO(1) face. The D5-brane charge is conserved

without introducing any flavor branes, and we have no more extra fields.

6. Conclusions and discussions

In this paper we investigated orientifold of brane tilings from the perspective of fivebrane

systems. Among several possibilities, we only discussed orientifold with O5-planes which
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are represented as points in bipartite graphs. We showed that the cancellation of Witten’s

Z2 anomaly and gauge anomaly are guaranteed by the conservation of D5-brane charge.

The fact that the O5-plane RR-charge flips at the intersection with NS5-brane plays the

key role to explain the gauge anomaly cancellation. The charge conservation requires the

emergence of appropriate flavor branes, which do not necessarily coincide with the O5-

planes, to compensate for the change of the O5-plane charges. These flavor branes provide

quark fields which cancel the gauge anomaly generated by symmetric or antisymmetric

representation fields.

In section 4 we investigated the relation between fivebrane systems to Calabi-Yau

cones. We gave the formula for Z2 parity of mesonic operators in terms of RR-charges of

O5-planes, and establish the relation between RR-charge and T-parity. We also gave quark

mass terms which reproduce the world volumes of flavor branes in toric Calabi-Yau cones

as the massless loci of quark fields.

All these are quite remarkable, but still there are many open questions.

As we mentioned above, we only investigated the case of orientifold with O5-planes.

There are, however, other possibilities with O7-planes. The matter contents for such case

is given in [10], and similarly to the O5-brane case, we need fundamental matter fields

to cancel gauge anomaly. The emergence of flavor branes should be guaranteed by some

consistency in the brane system and it is important to clarify how the quark fields arise in

these models.

In section 4.1, we restrict our attention only to RR-charge assignments with positive

total charge. (Total charge is the product of RR-charges of four O5-planes.) From the five-

brane perspective, it seems also possible to consider RR-charge assignments with negative

total charge. These two possibilities can be distinguished by two Z2 invariant value of the

integral

b =

∫

T 2

B2. (6.1)

The invariance under the orientifold flip b→ −b restrict this value to be 0 or π mod 2π. As

is clarified in [7], this parameter is related to the β-deformation in the gauge theory. It may

be interesting to investigate the relation between the brane configurations with negative

total RR-charge and β-deformation in gauge theories.

In general, the gauge theories realized by the fivebrane systems are not conformal.

Such gauge theories without conformal symmetry are known to enjoy phenomenon so-

called duality cascade [23]. It is known [24] that type IIA brane construction of N = 1

gauge theories provides simple way to realize Seiberg duality [25] in a geometric way. It

would be interesting to study the phenomenon by using the fivebrane systems investigated

in this paper.

Construction of models of dynamical SUSY breaking from orientifolded brane tilings

is an extremely interesting issue, considering its phenomenological interest. Our analysis

clarified the structure of the fivebrane system realizing the model proposed in [10]. We need

to consider non-trivial flow of flavor D5-brane charges along NS5-branes. Alternatively, we

can use metastable SUSY breaking [26]. In un-orientifolded case it is shown that we have
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metastable vacuum by the inclusion of flavor branes [9, 27], and we expect existence of

metastable vacua in orientifolded case as well.

Finally, it would be interesting to consider application to mirror symmetry for Calabi-

Yau orientifolds, since in the un-orientifolded case, brane tilings are quite useful in proving

homological mirror symmetry [28 – 30]. We expect several differences, such as that A∞-

structures are replaced by L∞-structures in orientifold case [31], but the basic line of

argument should be similar.

We hope to return to these topics in the future.
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A. Proofs of theorems

A.1 Some identifies

In this sections we prove three formulae, originally labeled (4.25), (4.34), and (4.35). The

first formula (4.25) is

σ(ρ(Zα+1,α)) = h(Zα+1,α)mod 2. (A.1)

The second formula (4.34) says if C is a Z2 symmetric path,

(−1)〈mα ,C[O]〉 =

∫

C[O]
ρ(mα). (A.2)

The final formula (4.35) is

(−1)〈m[sα ],C[O]〉 =

∫

C[O]
Qα. (A.3)

We have renumbered these formulae for convenience.

We first prove (A.2). By definition, 〈mα, C[O]〉 is given by the intersection number of

C[O] with the perfect matching mα. In general, we have many possible intersection points,

but if you consider mod 2 intersection number, only intersection points on orientifold planes

contribute because other intersection points always come in pairs. We thus have

(−1)〈mα ,C[O]〉 = (−1)(number of intersection points of C[O] with mα at fixed points). (A.4)

The r.h.s. is nothing but the definition of
∫
C[O] ρ(mα), which proves (A.2).
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Now the proof of other formulae are easy. (A.1) is shown from (A.2) as follows:

(−1)σ(ρ(Zα+1,α))1 =

∫

α
ρ(Zα+1,α) (... (4.21))

=

∫

α
ρ(mα+1)

∫

α
ρ(mα) (... (4.29))

= (−1)〈mα+1,α〉(−1)〈mα ,α〉 (... (A.2) with C[O] = α-cycle)

= (−1)〈Zα+1,α,α〉 (... (4.30))

= (−1)h(Zα+1,α)1 (... (4.5)).

(A.5)

(The subscripts 1 mean the first component of the vectors.)

Similarly, when C[O] is the α-cycle, we have

(−1)〈m[sα],C[O]〉 = (−1)〈m[sα ],α〉

= (−1)h(m[sα])1 (... (4.5))

= (−1)sα1 (... (4.6) and (4.13))

=

∫

α
Qα (... (4.21)).

(A.6)

The case of more general C[O] is similar, and this proves (A.3).

A.2 Divisors and GLSM fields

We here prove theorem 2. Namely, we show that in the subspace M′ defined in section 5.1

the divisor Fα is given by ρα = 0, where ρα is the GLSM field corresponding to the unique

perfect matching mα for the corner α of the toric diagram. For any perfect matching

mα′ , which does not necessarily correspond to a corner of the toric diagram, there is a

corresponding GLSM field ρα′ , and in terms of these GLSM fields the solution of the

F-term condition is given by [20]

ΦI =
∏

α′∋I

ρα′ , (A.7)

where α′ ∋ I means all perfect matchings including the edge I.

The system of ρα′ does not have superpotential and possesses U(1)n symmetry, where

n is the number of the GLSM fields. Among these U(1) symmetries, n−3 are gauged. The

gauged subgroup U(1)n−3 ⊂ U(1)n is specified by the charge matrix gα′

k , k = 1, . . . , n − 3.

The gauge transformation of ρα′ with parameter θk are given by

ρ′α′ = ei
P

k θkgα′

k ρα′ . (A.8)

By removing unphysical degrees of freedom associated with (complexified version of) this

gauge symmetry, we obtain the three dimensional moduli space. We denote the natural

map from ρ space MGLSM to the three dimensional moduli space M by ψ:

ψ : MGLSM → M. (A.9)
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These gauge transformation generate shifts in the space of angular variables ϕα′ =

arg ρα′ , and the toric fiber T
3 of the moduli space M can be regarded as classes defined

by the following identification relation:

ϕα′ ∼ ϕα′ + θkg
α′

k . (A.10)

We also use ψ for the natural homomorphism associated with this relation. Then, the

points in the toric diagram are related with the unit vectors in the ϕα′ space eα′ by

vα′ = ψ(eα′). (A.11)

By this relation, we can relate the symmetry in the GLSM and that of the moduli space M.

The symmetry U(1)[eα′ ] acting on MGLSM induces the isometry U(1)[vα′ ] of the moduli

space.

We will now prove the theorem 2:

• In the subspace M′ ⊂ M a divisor Fα is given by ρα = 0.

The restriction to M′ means that we neglect the subspace corresponding to the legs and

the center of the web-diagram as we mention in section 5.

It is obvious that if ρα = 0 the corresponding points in the moduli space is in the

divisor Fα because ρα = 0 is a fixed point of the symmetry U(1)[eα], which induce U(1)[vα]

in the moduli space. What is slightly non-trivial is the converse of this statement. Namely,

we need to show that

• If ψ(ρ) is a point inside a divisor Fα, then ρα = 0.

We assume that ψ(ρ) ∈ M′, and ψ(ρ) is not shared by more than one facets.

Let us choose one corner α0 in the toric diagram, and assume that ψ(ρ) is a point inside

a divisor Fα0
. This means that ρ is invariant under U(1)[eα0

] up to gauge transformation.

eiθδβ′

α0ρβ′ = eiθ
P

k ckgβ′

k ρβ′ , (∀θ, β′, ∃ck). (A.12)

One trivial solution is

ρα0
= ci = 0. (A.13)

We want to show that this is only solution to (A.12).

Let us assume ρα0
6= 0. The relation (A.12) with β′ = α0 requires

∑

k

ckg
α0

k = 1. (A.14)

Because
∑

α′ gα′

k = 0 for all k due to the GLSM U(1) anomaly cancellation condition, there

is at least one β′ 6= α0 with which

∑

k

ckg
β′

k 6= 0. (A.15)
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Figure 19: (a) shows two zig-zag paths passing through an edge. (b) shows the corresponding

external legs in the web-diagram.

If there is only one such a β′, say α′
1, it satisfy

∑

k

ckg
α′

1

k = −1. (A.16)

From (A.14) and (A.16), we have

δβ′

α0
− δβ′

α′

1

=
∑

k

ckg
β′

k , (∀β′). (A.17)

This relation, however, means that ψ(eα0
) = ψ(eα′

1
), and the two GLSM fields ρα0

and ρα′

1
,

and thus two perfect matchings mα0
and mα′

1
, correspond to the same point at a corner in

the toric diagram. This contradicts our assumption.

If there are more than one β′, say α′
1, α

′
2, . . ., satisfying (A.15), then from (A.12), we

have

ρα′

1
= ρα′

2
= · · · = 0. (A.18)

This means that ψ(ρ) shared by more than one divisors and again contradicts our assump-

tion that ψ(ρ) is a point inside the divisor Fα0
. Therefore, (A.13) is the only solution to

the relation (A.12).

A.3 Theorem 1

Let us prove the theorem 1.

The statement that the set of facets form one continuous region can be shown by using

the fact that edge I is always included in two and only two non-parallel zig-zag paths. This

means that mα+1[I] − mα[I] becomes non-zero for two α, and they give the boundaries

which divide the plane of web-diagram into two parts.

Let mα+1 −mα and mβ+1 −mβ be the two zig-zag paths which give the boundaries.

There are two possibilities

• case (i) : mα+1,mβ ∋ I, mα,mβ+1 ∋/ I.

• case (ii) : mα+1,mβ ∋/ I, mα,mβ+1 ∋ I.
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In the case (i), because mα+1 includes I, Zα+1,α = mα+1 −mα passes the edge I from

black to white, while Zβ+1,β passes in the opposite direction, from white to black. By the

definition of zig-zag paths, we see that Zβ+1,β crosses Zα+1,α upward when Zα+1,α goes left

to right. (Figure 19 (a))

This implies that the facets Fβ and Fα+1 are on the side of the minor angle made by

two legs (figure 19 (b)), and the all facets whose perfect matchings include the edge I are

also on the same side. The same is shown for the case (ii) and the proposition has been

proved.
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